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Abstract. Most landslide hazard assessment algorithms
in common use are applied to small regions, where high-
resolution, in situ, observables are available. A prelimi-
nary global landslide hazard algorithm has been developed
to estimate areas of potential landslide occurrence in near
real-time by combining a calculation of landslide suscepti-
bility with satellite derived rainfall estimates to forecast areas
with increased potential for landslide conditions. This paper
presents a stochastic methodology to compare this new, land-
slide hazard algorithm for rainfall-triggered landslides with
a newly available inventory of global landslide events, in or-
der to determine the predictive skill and limitations of such a
global estimation technique. Additionally, we test the sensi-
tivity of the global algorithm to its input observables, includ-
ing precipitation, topography, land cover and soil variables.
Our analysis indicates that the current algorithm is limited
by issues related to both the surface-based susceptibility map
and the temporal resolution of rainfall information, but shows
skill in determining general geographic and seasonal distri-
butions of landslides. We find that the global susceptibility
model has inadequate performance in certain locations, due
to improper weighting of surface observables in the suscepti-
bility map. This suggests that the relative contributions of to-
pographic slope and soil conditions to landslide susceptibil-
ity must be considered regionally. The current, initial fore-
cast system, although showing some overall skill, must be
improved considerably if it is to be used for hazard warning
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or detailed studies. Surface and remote sensing observations
at higher spatial resolution, together with improved landslide
event catalogues, are required if global landslide hazard fore-
casts are to become an operational reality.

1 Introduction

Landslides rank as one of the most pervasive hazards glob-
ally, yet estimates of landslide susceptibility and hazard as-
sessment are limited primarily to small spatial scales and
are constrained by data availability and spatial resolution
(Crozier and Glade, 2006). Methodologies developed for
high spatial and temporal resolutions, time-dependent or dy-
namic landslide hazard assessments are designed for regions
with adequate surface data, near real-time precipitation mon-
itoring networks, and high-quality event catalogues for cal-
ibration and validation. As a result, these methods do not
scale up easily for regional or global assessments of time-
dependent landslide hazard. Dilley et al. (2005) and Nadim
et al. (2006) develop landslide susceptibility and risk maps at
the global scale to represent hazard and population exposure,
but these assessments are static. While these studies estimate
spatial exposure, they do not provide a dynamic picture of
landslide hazard.
Hong et al. (2006, 2007a, b, c) have developed an algo-

rithm that provides dynamic forecasts of landslide occur-
rence in near real-time by combining a calculation of land-
slide susceptibility with satellite derived rainfall estimates
to forecast areas with increased potential for slope instabil-
ity conditions. The goal of this global algorithm is not to
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Fig. 1. Global landslide susceptibility index data from Hong et al. (2007a), plotted with the 2003 and 2007 landslide inventory data.
Susceptibility Index values 4 and 5 (yellow and red) denote areas that are considered as high susceptibility in the algorithm. The exact
definition of the susceptibility index values is presented in Hong et al. (2007a).

necessarily predict individual landslide events, but to identify
locations that exhibit a high probability for landslide initia-
tion, dynamically. The approach taken by Hong et al. (2006,
2007) is very challenging due to limitations in surface and
precipitation data as well as the global scope at which dy-
namic landslide hazard assessment is evaluated. As a result,
this landslide hazard algorithm remains an experimental first
step and requires calibration, validation and improvement be-
fore it can be used for hazard warning. This paper evaluates
the predictive capacity and accuracy of algorithm forecasts
against a new database of global landslide occurrences con-
sidered over the same time period. We introduce a methodol-
ogy for evaluating dynamic forecasts using global landslide
inventories, and discuss the data limitations inherent in the
inventories and forecast algorithm. We evaluate components
of the algorithm to determine both relative and absolute pre-
dictive skill, and estimate the sensitivity of input and valida-
tion parameters. Potential improvements are discussed.

2 Summary of current products

2.1 Algorithm description

The satellite-based global landslide hazard algorithm draws
on several remote sensing observables to derive a land-
slide susceptibility map and rainfall intensity-duration rela-
tionship. All of the datasets, ranging in spatial resolution
from 90-m to 1 degree, were aggregated or interpolated to
0.25◦×0.25◦ resolution for the susceptibility map using the
median value within each grouping of pixels. Topography,
slope, drainage density and other quantities were derived
from a global digital elevation model from the Shuttle Radar
Topography Mission (SRTM) (Rabus et al., 2003). Moderate
Resolution Imaging Spectroradiometer (MODIS) land cover

products were used to delineate land cover types using the
algorithm outlined by Friedl et al. (2002) and were parti-
tioned into general land cover classes according to Larsen
and Torres-Sánchez (1998). Landslide susceptibility values
were assigned to each cover type on a scale of increasing
susceptibility to shallow landslides. Soil characteristics were
obtained from (FAO/UNESCO, 2003) and (Batjes, 2000).
Six parameters were chosen to estimate susceptibility:

slope, soil type, soil texture, elevation, land cover, and
drainage density. The parameters were normalized glob-
ally and integrated using a weighted linear combination of
variables. The weight for each variable was qualitatively
assigned using information from previous landslide suscep-
tibility studies, which specifies the relative importance of
each variable (Coe et al., 2004; Dai and Lee, 2002; Lee and
Min, 2001; Sarkar and Kanungo, 2004; Larsen and Torres-
Sanchez, 1998). The following weights were assigned: slope
– 0.3, soil type – 0.2, soil texture – 0.2, elevation – 0.1, land
cover – 0.1, and drainage density – 0.1. Weighted, normal-
ized variables were combined to develop a global susceptibil-
ity map with a numerical index varying from 0 (water bodies
and ice) to 5 (highest susceptibility) (Fig. 1). Since no global
landslide validation data were available, Hong et al. (2007a)
compared the susceptibility results with a North American
study (Godt, 1997) and found there to be a reasonable, qual-
itative, fit. Details are presented in Hong et al. (2007a).
The present study evaluates the average rainfall inten-

sity needed to trigger a landslide over a specified duration
using an empirically derived rainfall intensity-duration (I-
D) threshold curve first established by Caine (1980). Sub-
sequent thresholds have been calculated on the global, re-
gional, and local scales, primarily for shallow landslides or
debris flows. Hong et al. (2006) developed an I-D thresh-
old using Tropical Rainfall Measuring Mission (TRMM)
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Multi-Satellite Precipitation Analysis (TMPA) Version 6
rainfall estimates (Huffman et al., 2007) for 74 landslide oc-
currences globally, most of which were shallow landsliding
events. The curve used in the algorithm falls slightly below
the curve defined by Caine (1980) and above the quasi-global
curves outlined by Innes (1983), Crosta and Frattini (2001),
and Guzzetti et al. (2008), all of whom consider shallow
landslides and debris flows (Fig. 2). The TMPA rainfall pro-
vides 3-hourly coverage from 50◦ N to 50◦ S at 0.25◦×0.25◦

resolution from 1998 to the present. These values are con-
sidered at each pixel globally and rainfall accumulations are
summed over 1, 3, and 7-day durations, updating every 3 h.
The average rainfall intensity is calculated as a continuous
variable over the specified durations, rather than defining
specific rainfall events in time. The cumulative rainfall es-
timates are divided by the specified duration to obtain aver-
age rainfall intensity values, for a more direct comparison to
previous studies.
To determine areas of landslide potential globally, the

susceptibility map and rainfall accumulations are consid-
ered on the pixel scale at 3-h intervals. If the susceptibil-
ity index for a given pixel has a high Susceptibility Index
(SI) value of Category 4 or 5 and the rainfall accumula-
tion at the specified duration exceeds the corresponding I-D
threshold value, the pixel is identified as having high land-
slide potential and a forecast is issued. There is no speci-
fication for landslide forecast magnitude or size due to the
coarse resolution and global scale of this model and the
limited number of surface and precipitation inputs used to
define potentially susceptible landslide conditions globally.
The flow chart for this algorithm framework is illustrated in
Fig. 3. The method is operating in near real-time, with re-
sults updated every three hours at http://trmm.gsfc.nasa.gov/
publications dir/potential landslide.html.

2.2 Landslide inventory data

2.2.1 Data description

One of the main factors limiting landslide hazard assess-
ments on regional (country-level) or global scales is the lack
of landslide inventories that can be used to validate landslide
hazard models. A few studies have catalogued landslide oc-
currences at the national or global scale (Guzzetti et al., 1994;
Petley et al., 2005). While they provide valuable insight
into landslide distribution, the studies constrain the search
criteria for cataloguing landslide occurrences spatially or by
event impact. In order to evaluate the global landslide haz-
ard algorithm, a global landslide inventory has been prepared
for rainfall-triggered landslides reported in the media. Each
landslide entry attempts to describe a landslide occurrence,
which can be a single landslide or grouping of events trig-
gered by the same extreme rainfall. In this paper, we refer to
an individual landslide entry in the catalogue as a landslide
event. The entry includes the date of occurrence, nominal
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Fig. 2. Global rainfall intensity-duration thresholds: (A)
Caine (1980), (B)Hong et al. (2006), (C)Crosta and Frattini (2001),
(D) Innes (1983), (E) Guzzetti et al. (2008). The 1, 3, and 7-day du-
rations considered by the algorithm are shown on the graph.

location and geographic coordinates, type of trigger, land-
slide impacts, and qualitative descriptions of the relative size
and location accuracy of the landslide.
The reports were extracted from journal articles, existing

databases and online news media as well as government and
relief aid organization reports. The study includes all types
of rapidly-occurring landslides, most of which are relatively
shallow landslides or debris flows occurring within 10m of
the surface, although the actual depth of the landslide or type
of movement is rarely given. The inventory has been pre-
pared for the years 2003 and 2007 and is currently being
prepared for 2008 and 2009. The resulting landslide inven-
tories have 205 landslide reports for 2003 and 350 reports
for 2007. The spatial distribution of the landslide inventories
is illustrated in Fig. 1. A detailed analysis of the landslide
inventory is given by Kirschbaum et al. (2009).

2.2.2 Inventory data limitations

The inventory is influenced by reporting biases, which af-
fect the availability, reliability, and completeness of land-
slide reports. The landslide inventory reports are particularly
limited when landslide events are associated with contem-
poraneous hazards such as tropical cyclones, or when land-
slides occur in remote areas where they are typically under-
reported. These issues are emphasized by studies that em-
ploy similar methodologies (Guzzetti et al., 1994; Petley et
al., 2005, 2007; Castellanos Abella and van Westen, 2007;
Chau et al., 2004). Due to reporting issues, the landslide in-
ventory does not provide a comprehensive list of landslide
occurrences globally nor does it assume that deficiencies in
landslide reporting are distributed randomly.
For example, population exposure can affect landslide re-

porting. We compare population density values at both the
landslide inventory and algorithm forecast locations, plotting
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Type, Texture  
Soil Property 

Forest, barren, etc.  
Land Cover  

Drainage Density  
Hydrology  

        TRMM Multi-satellite 
Precipitation Analysis (TMPA) 
50N to 50S: 3-hour, 0.25o x 0.25o 

Rainfall Data

Intensity-Duration Threshold 
(Figure 3)

3-day Forecasts

Fig. 3. Schematic of the Global Landslide Hazard Algorithm. The algorithm is composed of two components: a landslide susceptibility map
composed of the listed surface parameters, and an intensity-duration rainfall threshold with TMPA satellite rainfall data. When a pixel on
the Susceptibility Map has a value of 4 or 5 and the rainfall accumulation exceeds the intensity-duration threshold value, the pixel is denoted
as having high landslide potential and a forecast is issued. The map on the bottom illustrates how the global forecasts are represented on the
algorithm website (http://trmm.gsfc.nasa.gov/publications dir/potential landslide.html). Yellow circles denote areas where forecasts have
been issued in one time slice. Each area can be zoomed in to observe individual highlighted pixels. This example shows the 3-day duration
threshold.
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Fig. 4. Frequency of population density from (CIESIN, 2005) be-
tween 3-day algorithm forecasts and landslide events for 2003 and
2007. The distribution of population density values for landslide
locations are skewed towards higher values compared to algorithm
forecasts.

their distributions in Fig. 4. Results show that as popula-
tion density increases, the percentage of landslide inventory
events is consistently higher than the percentage of algo-
rithm forecasts in the same population density bins. This
suggests that landslide inventories are either failing to iden-
tify landslides in more rural locations or that the algorithm
forecasts are not resolving potential landslide conditions in
more populated areas. Another issue affecting the number of
events in the inventory is the time frame in which the land-
slide occurrences are recorded. The inventory compilation
project began in 2007, allowing for landslide occurrences to
be recorded on a daily basis; whereas archived media records
and other database sources were used to develop the 2003 in-
ventory. As a result, the 2007 inventory has almost twice as
many events as the 2003 inventory. Many more small events
were detected as well, which we discuss below. While we
are not able to differentiate quantitatively the contribution of
reporting biases from other variables affecting landslide fre-
quency, such as climatic factors like ENSO, we attribute the
variability in the size of each inventory to the availability of
more media sources for the 2007 database.
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To develop a general sense of the size and location ac-
curacy of each landslide occurrence, two qualitative indices
were developed. We assign a “confidence radius” to each
catalogue entry, with the highest confidence assigned to land-
slides whose locations are known to within 5 km. A relative
measure of the size or extent of each landslide occurrence
was also defined using a similar ranking scale to differenti-
ate very small events (one small hillslope) from landslides
with large volumes and aerial extents. In our analysis, we
remove landslide entries with either a low location accuracy
(location not known within 75 km) or a small size classifi-
cation in an attempt to remove some of the reporting biases
that may exist between regions. While these specifications
do not greatly improve the landslide inventory, they are help-
ful in providing a consistent set of criteria that can be used
to better express inventory limitations in the context of the
algorithm evaluation.

3 Methodology for algorithm evaluation

The algorithm was run retrospectively for 2003 and 2007 us-
ing 1, 3 and 7-day temporal windows to obtain the number
and location of algorithm forecasts for each year. Pixels oc-
curring within a 1◦ radius and within one day of each other
were grouped to represent a single forecast, providing a more
realistic representation of the number of forecasts for each
year. We assume that forecasted landslides represent all ty-
pologies, although shallow landslide events are more likely
to be forecast because they were used to calibrate the rainfall
I-D threshold relationship.

3.1 Forecast evaluation techniques

This analysis compares the spatial and temporal distributions
of algorithm forecasts and landslide catalogued events to de-
termine the general accuracy and the potential limitations of
this preliminary landslide forecast approach. Our compari-
son is constrained by the incompleteness of the landslide in-
ventory and the relatively low spatial resolution of the algo-
rithm forecasts. Nevertheless, the inter-comparison approach
provides a useful framework for assessing the algorithm’s
operational potential and limitations in the landslide inven-
tory data.
We evaluate the susceptibility map and rainfall intensity-

duration threshold separately, comparing them with the land-
slide inventory spatially and temporally. The size of the algo-
rithm forecast catalogues is approximately an order of mag-
nitude larger than the corresponding landslide inventories,
since there are many more areas that exhibit landslide poten-
tial conditions with no landslides than actual events, and the
landslide inventories are incomplete. Since the ratio of algo-
rithm forecasts to landslides is overly large, we must develop
both absolute and relative skill indicators. This allows us to

identify geographic areas which may not be well-represented
by the current susceptibility and rainfall information.
Geographic Information System (GIS) software was used

to determine where and when the forecasts successfully re-
solve landslide occurrences. To account for uncertainty in
the landslide inventory locations, each landslide occurrence
was defined as a circle equal to its assigned confidence ra-
dius. We consider a landslide to be successfully resolved
if the algorithm forecast intersects the landslide occurrence
1 day prior or subsequent to the landslide date, correspond-
ing to our estimate of the temporal precision of the landslide
inventory.
To evaluate the algorithm’s relative skill, we calculated

the number of algorithm forecasts and landslide inventories
within 2◦×2◦ cells globally. The 2◦ resolution was chosen
to clearly discriminate between algorithm forecast events,
since forecast pixels within 1◦ could be considered originat-
ing from the same event. We present the results for the 3-day
temporal threshold. Forecast and landslide databases were
normalized by the total database size. A Skill Ratio (SR) is
defined as the normalized forecast density over the landslide
inventory density at each pixel, written as:
For pixel j , where NF and NL>0,

let N̂F
j =

NF
j�

j

NF
j

(1)

let N̂L
j =

NL
j�

j

NL
j

SRj =
�

j

N̂F
j

N̂L
j

where j represents the pixel indices, NF is the number of
forecasts and NL is the number of landslides globally. The
skill ratio indicates that a pixel with SR>1 has more forecasts
than landslides, SR<1 has fewer forecasts compared to the
density of landslides, and SR≈1 has a comparable number
of forecast and landslides.
Areas with no reported landslides but a high density of

algorithm forecasts (Type I Errors) are considered Over-
forecasts, written as:

If NL
j = 0 then Over− forecastsj =

NF
j

max(NF )
(2)

Areas with landslide occurrences and no forecasts (Type II
Errors) are labeled as Missed Landslides, written as:

If NF
j = 0 then Missed Landslidesj =

NL
j

max(NL)
(3)

Both the Over-forecast and Missed Landslide pixels were
normalized by the maximum value on the global grid. The
Skill Ratio, Over-forecast and Missed Landslide statistics
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Fig. 5. Frequency of 2003 and 2007 landslide inventory events for
each susceptibility index category. The susceptibility index cate-
gories are shown in Fig. 1 and described in Hong et al. (2007a).

were plotted on a global map for comparison. The precise
meaning of the Skill Ratio and Over-forecast values is lim-
ited, since the landslide inventory is incomplete. Relative
skill, however, highlights the spatial discrepancies between
forecasts and observed occurrence, and suggests a more ro-
bust measure of validity.
The absolute skill of the algorithm is evaluated using a

Probability of Detection (POD) value, which indicates the
number of landslide occurrences that are successfully pre-
dicted by the algorithm forecasts over time (Panofsky and
Brier, 1965). While this statistic suffers from the same in-
ventory limitations as the relative skill metrics, it provides us
with some indication of how the current algorithm performs
in time. We define the statistic as:

POD =
� NF

j ∩ NL
j

NL
(4)

3.2 Evaluation of surface parameters

We evaluate the importance of the algorithm’s constitutive
variables by examining the sensitivity of the Over-forecast
and Missed Landslide metrics to soil texture, land cover, and
slope. These three surface variables have clearly identifiable
effects on slope instability and are heavily weighted in the
current susceptibility index (Nadim et al., 2006; Guinau et
al., 2005; Wang and Sassa, 2005). Soil texture and soil type
are closely related so only soil texture is examined. The three
surface variable grids were aggregated from 0.25◦×0.25◦

resolution to a 1◦ grid globally using the mean value from
each set of cells. The maximum value within the grid was
used to represent slope. The soil texture and land cover grids
were then individually normalized and values were extracted
from each variable for landslide locations and algorithm fore-
cast locations.

Table 1. Percentage of landslide occurrences in each Susceptibility
Index category for coastal and inland event locations. Results indi-
cate that landslides located inland have higher susceptibility values
compared to landslide events located in coastal areas.

Susceptibility 2003 2007
Index Coastal Inland Coastal Inland

0 22% 1% 9% 2%
1 5% 0% 26% 0%
2 15% 3% 19% 5%
3 20% 15% 18% 22%
4 12% 25% 16% 35%
5 27% 57% 13% 37%

We estimate the spatial sensitivity of algorithm over-
forecasts to input variables by defining a Correlation Param-
eter (CP), which represents the product of normalized soil or
land cover with the normalized Over-Forecast metric, written
as:

N̂
S|LC
j = S|LCj

(max S|LC−min S|LC)
(5)

Correlation Parameter,CPS|LC
j = Overforecastsj ∗ N̂

S|LC
j

where S|LC represents either soil texture or land cover. The
CP can be used as a proxy to estimate the spatial coherence
and sensitivity of each parameter affecting over-forecasted
areas. The statistic is used to create a 1◦ global grid with
a quantitative index ranging from 0 to 1, with 1 indicating
pixels where the density of forecasts is highly sensitive to
the surface variable.

4 Results

4.1 Susceptibility map

According to the susceptibility map, 69% of the events for
the 2003 landslide inventory and 58% of the 2007 inventory
corresponded to SI values of Category 4 or 5 (Fig. 5). Be-
tween 27% and 29% of the landslide events for both years oc-
curred in coastal regions (within 25 km of the coastline) with
the majority of these events falling into low SI categories
(62% for 2003 and 76% for 2007). Comparatively, only 30%
and 19% of the landslides located inland corresponded to the
low susceptibility values for 2003 and 2007, respectively (Ta-
ble 1). The spatial resolution of the susceptibility map is pri-
marily responsible for the discrepancy between coastal and
inland values. In the Hong et al. (2007a) method, if the ma-
jority of a pixel in the susceptibility map is covered by water,
it receives a value of 0. This limits the ability to resolve
small, but highly susceptible, features especially topography,
and results in an underestimation of susceptibility in these
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regions. In addition, high population growth in coastal ar-
eas can contribute to increased landslide frequency, a factor
that is not incorporated in the current susceptibility map, but
which affects the landslide inventory database.

4.2 Rainfall threshold detection

We chose a subset of landslide occurrences with high con-
fidence in their location (i.e., location known within 25 km)
in order to estimate the relative success of the I-D thresh-
old. 161 events were chosen from the 2003 database and
309 from 2007. For each event, daily rainfall accumulation
was calculated using TMPA rainfall data for the seven days
prior to and the date of the reported event. Using the same
1, 3, and 7-day duration threshold windows considered in the
algorithm, average rainfall intensity measurements were cal-
culated in two ways: finding one average rainfall value for
the three durations, with the landslide date serving as a fixed
end point; and calculating the average rainfall intensity for
the three durations using a running window end date over the
8 days of each record.
Rainfall accumulation for the landslide occurrences ex-

ceeded the I-D threshold values for only 28% of the 2003
landslide inventory and 17% of the 2007 events, suggesting
that either the rainfall threshold is too high or the TMPA rain-
fall data is limited (Table 2). Many of the 2003 and 2007
landslide occurrences that were not resolved were associated
with short-duration, high-intensity rainfall, typically exceed-
ing the I-D threshold at sub-daily scales of 3 to 12 h. The
failure of the I-D threshold to resolve over 70 to 90% of
the landslide occurrences suggests that either the threshold
is too high for the temporal durations considered, the tem-
poral windows are too long, the satellite data cannot appro-
priately resolve surface rainfall intensities, the landslide was
incorrectly located or dated, or the landslide was triggered by
conditions other than rainfall. It is likely that multiple factors
contribute to these unresolved landslide occurrences.

4.3 Algorithm forecasts

4.3.1 Relative skill

We compared the algorithm forecasts with the landslide in-
ventories according to the percentage of events by month
and 10◦ latitude bands (Fig. 6). The monthly distribu-
tions for both years indicate similar seasonal patterns, with
a peak in landslide occurrences and forecasts in the North-
ern Hemisphere summer (June through September) which is
consistent with the trend suggested in Petley et al. (2005).
We also consider the latitudinal characteristics of the land-
slide occurrences and algorithm forecasts to determine if the
two datasets have the same distribution in the Northern and
Southern Hemispheres. Figure 6 indicates that the forecasts
and landslides follow similar distributions for the Northern
Hemisphere, with the largest percentage of events in both

databases occurring within the 20–30◦ North latitude band.
However, the same distribution does not apply in the South-
ern Hemisphere, where there are very few landslide reports
in proportion to the percentage of forecasts. We attribute this
discrepancy to landslide reporting biases or non-English me-
dia in Central and Southern Africa and South America as
well as over-forecasting in certain locations. There is likely
a strong geographic bias in this statement given the small size
of the validation dataset.
The Skill Ratio, Over-forecast, and Missed-Landslide

metrics are used to illustrate where the algorithm is over-
estimating, under-estimating, or correctly resolving landslide
activity and susceptibility. The three statistics were plotted
on one map for 2003 (Fig. 7a) and 2007 (Fig. 7b). A positive
Skill Ratio, depicted in green, indicates areas with both land-
slide reports and forecasts. Over-forecasted areas are shown
in red, and blue areas denote pixels where landslides have
been identified without corresponding forecasts.

4.3.2 Absolute skill

POD values are calculated at 1, 3, and 7-day temporal win-
dows by considering the landslide occurrences that are accu-
rately detected by the algorithm forecasts for the entire land-
slide population as well as the landslide events only occur-
ring in high susceptibility index categories (Table 3). The
1-day threshold window resolves the largest percentage of
the events for both years (32% for 2003 and 22% for 2007)
and decreases as the temporal window increases. However
the number of forecasts increases from approximately 1100
to 5000 forecasts per year as the temporal window decreases
from 7 days to 1 day, resulting in larger concentrations of
over-forecasted pixels. We attribute this large number of
forecasts at shorter temporal thresholds to more frequent
high-intensity, short-duration events as well as an overesti-
mation of high susceptibility values, rather than too low an
I-D threshold. This conclusion is problematic due to the sig-
nificant difficulty of the I-D threshold to resolve a large ma-
jority of the landslide inventory events. This is based on the
results of Sect. 4.2.

5 Sensitivity analysis

5.1 Surface variables and resolution

We address the question of what is driving the most sig-
nificant biases in the susceptibility map by comparing soil
texture, land cover and slope at landslide locations and al-
gorithm forecast locations. The Correlation Parameter met-
ric is used to spatially evaluate these trends. Since the data
used to derive soil texture globally closely mirrors the soil
type data, when the products are considered together, areas
with high soil susceptibility values have twice the influence
on the susceptibility index. Both have a weight of 0.2 in
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Table 2. Evaluation of rainfall intensity-duration thresholds at 3 temporal windows, shown as the proportion of landslides resolved at each
temporal duration. The two columns for each year show the percentage of landslide events resolved when the landslide date is fixed and
when the intensity-duration threshold values are considered in a variable window within 8 days of the landslide event.

2003 2007

Variable Variable
Temporal Date of window: 8 days Date of window: 8 days
Duration Event prior to event Event prior to event

1-day 7% 27% 7% 16%
3-day 14% 24% 6% 10%
7-day 16% 16% 6% 8%

ALL 45 events 28% 53 events 17%
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Fig. 6. Frequency of landslide occurrences and algorithm forecasts spatially and temporally for 2003 (left) and 2007 (right); (a) and (b)
show the percentage of landslide events and algorithm forecast by month; (c) and (d) show the percentage of landslide events and algorithm
forecasts by latitude.

the susceptibility map. We extract the normalized soil tex-
ture values for forecast locations and landslide locations and
find that soil texture values tend to be higher in forecast loca-
tions compared to landslide areas (Fig. 8a). This implies that
soil texture is biasing the susceptibility map without adding
additional utility and its inclusion in the susceptibility in-
dex should be re-evaluated or de-emphasized. This result
is not surprising given the coarse spatial resolution of soil
data. Figure 8b highlights the spatial Correlation Parame-
ter for soil texture within Eastern Asia and Oceania. The
highest correlations over the Indian peninsula and portions
of Southeastern China indicate that soil texture is likely the
primary source of over-forecasting. This can significantly
bias the susceptibility index in areas where the slope values
(weighted as 0.3) are relatively low.

For the land cover data, the percentage of normalized land
cover pixels above 0.7 is much larger for catalogued events
than for forecasts, indicating that land cover may play a more
influential role in the Susceptibility Index than its current
weight of 0.1 suggests (Fig. 8c). Figure 8d illustrates the
Correlation Parameter for land cover, with values exhibiting
a distribution similar to that for soil texture but with slightly
smaller values.
Slope values were extracted at landslide and algorithm

forecast locations and their distributions are plotted in Fig. 9.
The percentage of slope values above 5 degrees is signif-
icantly higher for the landslide locations compared to the
forecast locations. The over-forecasted regions in India and
portions of Brazil are significant contributors to the distri-
bution of low slope values, which are dominated by high
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Table 3. Probability of Detection (POD) values for three temporal windows, where the columns indicate the proportion of landslide events
in each landslide catalog that were resolved by the algorithm for the specified temporal duration. For each year, the first column displays all
landslide occurrences and the second column only considers landslides that are located in areas with a susceptibility index value of 4 or 5.

2003 2007

POD: Total POD: Only POD: Total POD: Only
Temporal Landslide Susceptibility Landslide Susceptibility
Duration Inventory 4 and 5 Inventory 4 and 5

1-day 22% 32% 13% 22%
3-day 15% 21% 10% 17%
7-day 13% 18% 6% 11%

soil type and soil texture values. When slope is aggre-
gated to 0.25◦×0.25◦ resolution using the median value for
each set of 90-m pixels, the maximum slope resolved in the
0.25◦×0.25◦ product globally is 21 degrees, a clear under-
estimation of the highest slope values. A more appropriate
methodology is needed to accurately compute or character-
ize slope values for aggregated pixels.
Spatial resolution and uncertainty or errors in the sur-

face data products limit the accurate characterization of sus-
ceptibility conditions. Land cover information offers near-
homogenous global coverage; however the classification of

pixels into distinct categories can be subjective when esti-
mating general landslide susceptibility conditions. The soil
data have the most significant sources of uncertainty because
the datasets are compiled from a set of global sampling sites
and modeled to 0.5◦ or 1.0◦ resolution. The sampling sites
are not uniformly distributed and result in data gaps that are
typically undocumented. The spatial resolution and identifi-
cation of surface parameters including topography, soil prop-
erties, land cover and hydrological variables in mountainous
areas can also be challenging due to the complexity and vari-
ability of the terrain (Thompson et al., 2001).
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5.2 Rainfall sensitivity

In order to evaluate how rainfall observations affect algo-
rithm performance, we applied the algorithm to a case study
of Hurricane Mitch in Central America (landfall 29 Octo-
ber, 1998, Category 1 on SS scale). Landslide inventory data
were compiled in affected areas in Honduras, Nicaragua, El

Salvador, and Guatemala (USGS, 2007). The mapped ar-
eas were compared with the algorithm forecasts using 1-day
temporal windows for 10 days before and after the storm’s
landfall. Approximately 60–70% of the mapped land area
corresponded to high susceptibility values. The algorithm
forecasts intersect the mapped regions in parts of Nicaragua,
Honduras, and a small portion of Guatemala; however, large
portions of El Salvador, Guatemala and Western Honduras
did not receive forecasts. This is likely due to the poor detec-
tion of high-intensity, short-duration rainfall events, which
were frequent during Hurricane Mitch (Fig. 10).
We extracted National Climate Data Center (NCDC) rain-

fall gauge information from the only two available stations
in Honduras and compared the daily totals to TMPA rainfall
over the same time period and area, shown in Fig. 10. At both
stations, the daily rainfall accumulation was over two times
higher than the satellite rainfall estimates. For the northern
rainfall gauge at La Ceiba station, the daily rainfall estimate
exceeded the 1-day threshold (80mm/day) and a forecast was
issued. However, at Tegucigalpa station in Southern Hon-
duras, satellite rainfall did not exceed the 1-day threshold and
resulted in a missed landslide. There are a number of issues
in comparing rainfall gauge data and satellite rainfall esti-
mations that affect the interpretation of these results, includ-
ing the inherent difficulty in comparing point sources with
spatially averaged data, and heterogeneous spatial coverage
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(Fisher, 2004). However, this example provides insight into
some of the underlying discrepancies between in situ and re-
motely sensed rainfall estimations.
One reason for the discrepancy between satellite and

gauge rainfall is that TMPA satellites are unable to contin-
ually monitor the rainfall intensities in a storm, but rather
provide a snapshot of the rainfall field at a minimum of 3-
h intervals due to the sampling frequency (Huffman et al.,
2007). In addition, the 0.25◦×0.25◦ spatial resolution and
1-day temporal window limits the ability to resolve high-
intensity, short-duration events such as fast-moving tropical
systems. Dealing with extremes in radar rainfall data is an
ongoing topic of research in remote-sensing and the degree
to which we can better resolve such extremes will affect the
forecasting capabilities of these systems. Shallow orographic
rainfall is also not well-resolved in the current TMPA rainfall
data due to the difficulties in resolving warm rain processes
over land as well as the underestimation of mountainous re-
lief, leading to significant under-estimations of rainfall (Bar-
ros and Lang, 2003; Adler et al., 2000). This is likely what
occurred in the mapped areas in Guatemala, where complex
topography is common and there were no forecasts issued
(Bucknam et al., 2001). Antecedent soil moisture is also a
key variable unaccounted for in the triggering relationship
that can be used to identify susceptible surface conditions
dynamically (Glade et al., 2000).

6 Discussion

The goal of this analysis is to evaluate a proposed global
landslide hazard assessment algorithm using global landslide
inventory data in order to determine what contributes to sig-
nificant uncertainties, and how key input observations inter-
relate. Considering landslide hazard globally is an extremely
challenging task that requires large generalizations of the
physical mechanisms underlying slope instability as well as
the rainfall-triggering processes. As a result, there are many
factors limiting our ability to evaluate quantitatively the algo-
rithm’s performance, including the consideration of surface
variables and rainfall data at the same coarse spatial resolu-
tion globally and the troubling incompleteness of the land-
slide catalogues. Despite these limitations, the analysis sug-
gests that the algorithm demonstrates some predictive skill
in resolving the landslide inventory events. Although a ro-
bust test is vitiated by limitations in the underlying variables,
we suggest that the statistical framework we have developed
is useful for assessing the performance of global forecasting
methods as well as their limitations. The proposed method
for dynamic landslide hazard forecasting has these limita-
tions:
1. Improper identification of susceptible areas results in
Over-forecasting biases;

2. Under-estimation of rainfall accumulation as it relates
to the current intensity-duration threshold contributes to
large Missed landslide values;

www.nat-hazards-earth-syst-sci.net/9/673/2009/ Nat. Hazards Earth Syst. Sci., 9, 673–686, 2009



684 D. B. Kirschbaum et al.: Evaluation of a landslide algorithm using global inventories

3. Landslide inventory incompleteness for global and re-
gional calibration and validation.

The present susceptibility map demonstrates some skill in
resolving the potential location of landslide events; however,
there are many regions where susceptibility is overestimated
compared to what is realistic. The weighted linear combina-
tion approach used to integrate the parameters in the suscep-
tibility map employs a subjective categorization of weights
which serves to bias the susceptibility values regionally. In-
stead, a susceptibility evaluation should be done using re-
gression and sensitivity analysis to more appropriately relate
surface observables to susceptibility.
The spatial resolution of surface variables at 0.25◦×0.25◦

in the susceptibility map results in a loss of important in-
formation, particularly for slope. When 90-m slopes are ag-
gregated to coarser spatial resolutions, particularly using the
median value, small, but important surface features are ob-
scured including coastlines and small islands. Probability
distributions and modeled slope histograms can be used as
a guide to determine the scale at which to approach the issue
of slope resolution. Building on the current data inputs and
methodologies, a new susceptibility map can be derived at a
higher spatial resolution using a separate weighting scheme
to better resolve these features.
The relative skill metrics, Skill Ratio, Over-forecast den-

sity, and Missed landslide density, are useful for spatially
evaluating algorithm performance and highlighting areas in
which the algorithm requires improvements. The western
and central portion of the Himalayan Arc, Western India,
areas in Southeast China and parts of the Philippines and
Indonesia have a positive Skill Ratio, suggesting that there
are both landslides and algorithm forecasts in these regions;
however for some areas, particularly in Northern India and
Nepal, the Skill Ratio below 1 indicates that there are com-
paratively more landslides than forecasts. This is likely a re-
sult of satellite data underestimating rainfall at high altitudes
during the monsoon season, since the susceptibility values
are generally high in these regions (Barros et al., 2000).
Many of the landslide occurrences in this region were also
reported along major highways. While we removed all land-
slides that were clearly anthropogenically triggered, such as
those in mines, removing events along roads would exclude
too much of our inventory. This suggests that anthropogenic
modification of the surface plays a sizeable role in increasing
surface instability, which has not been resolved in the current
susceptibility map. The high Over-forecast densities in the
Indian peninsula, Brazil, Eastern China, and Central Africa
appear to come from over-emphasizing soils information and
under-weighting slope, which result in high susceptibility in-
dex values. Lastly, missed-landslides have the highest den-
sity in the Central United States, portions of the Caribbean,
and parts of Western Asia including Afghanistan and Pak-
istan. We attribute this to low susceptibility index values
in coastal areas, poorly resolved rainfall accumulations, or

enhanced instability from other factors such as snow melt,
seismic activity, and anthropogenic influence.
Although it is difficult to differentiate the physical suscep-

tibility conditions from biases in landslide reporting, the tem-
poral and latitudinal distribution of forecasts can provide in-
sight into this issue. Both the landslide events and algorithm
forecasts exhibit consistent seasonal and spatial patterns for
2003 and 2007; however, the proportion of algorithm fore-
casts to landslides is much higher for the Southern Hemi-
sphere tropics and sub-tropics, compared to other areas. The
relative skill evaluation indicates that over-forecasting is a
problem in Brazil and Central Africa; however, the landslide
reporting may be a larger contributor to the uncertainty due to
non-English reporting of landslide events and limited trans-
mission of event information to media sources.
Since 60–70% of the landslides fall within high suscep-

tibility locations, the low POD values (ranging from 19 to
33%) imply that the rainfall threshold relationship is vastly
under-estimating rainfall accumulation. While the rainfall
intensity-duration threshold may be the most straightforward
way to estimate potential landslide triggering conditions,
considering the I-D threshold curve at the global scale may
not be the ideal way to resolve these events, particularly
among different climatic zones (Guzzetti et al., 2008). In
addition, the minimum 1-day threshold is unable to success-
fully identify events with short-duration, high-intensity rain-
fall triggers. The limited sampling frequency of the current
TMPA satellite data at sub-daily scales precludes the use of
rainfall accumulations at less than one day. Specifying I-
D thresholds regionally may help to resolve the rainfall ex-
tremes and could be enhanced with antecedent soil moisture
information to provide more system memory.
The landslide inventory data represents one of the largest

uncertainties in our algorithm evaluation because without a
complete dataset, we are unable to pinpoint the contribution
of each variable’s uncertainty to the total estimation of al-
gorithm accuracy. For our analysis, we require information
on all available rainfall-triggered landslide occurrences at the
global scale and therefore cannot limit the scope of our analy-
sis at this point. The use of regional data from specific events,
such as Hurricane Mitch, can offer more comprehensive and
quantitative information to evaluate algorithm performance.
This can provide key insight into the surface variables affect-
ing susceptibility in these regions.

7 Conclusions

This analysis suggests that the first version of this landslide
hazard algorithm cannot be used as an operational tool; how-
ever, it provides insight into the interrelationship of the sus-
ceptibility map, rainfall threshold, and landslide inventory
at the global scale. The spatial resolution of the suscepti-
bility map greatly inhibits the ability to resolve small fea-
tures, particularly in complex topography and coastal areas.
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Furthermore, the methodology used to relate the surface vari-
ables in the susceptibility map does not accurately represent
surface conditions globally. The susceptibility map should
consider data products at higher spatial resolutions using a
more physically-based approach to better resolve the quanti-
tative relationship between surface variables and their contri-
bution to surface instability. Limitations in satellite estima-
tion of rainfall, particularly in resolving peak rainfall accu-
mulations, influence the detection of rainfall-triggered land-
slide events and consequently decrease the effectiveness of
the intensity-duration curve. Since the accuracy and reso-
lution of the TMPA rainfall data are not likely to improve
significantly in the near future, rainfall-triggering informa-
tion should be enhanced with additional proxies for hydro-
logic instability within the algorithm framework. At present,
the algorithm’s temporal memory is only as long as the du-
ration windows considered in the rainfall threshold. Intro-
ducing a variable such as antecedent soil moisture could ex-
tend the memory of the system and better resolve locations
of potential instability, particularly following heavy rainfall
events. Intensity-duration and rainfall accumulation relation-
ships may also be considered regionally to remove some of
the climatological bias between regions and allow for more
effective evaluation of the pre-conditions and intensities con-
tributing to landslide triggering in separate climatologies.
While the global landslide hazard algorithm framework

may eventually be useful for forecasting landslide haz-
ard conditions at the global scale, at present the approach
can be effective for understanding the relationship between
landslide-controlling variables. Spatial and temporal data
resolution and accuracy serve as the most significant limit-
ing factors of this analysis and in many cases may be im-
proved upon by considering higher resolution products. The
incompleteness of the global landslide catalogue remains a
significant limiting factor for validating any algorithm at the
global level. We suggest that a comprehensive global cat-
alogue be a high-priority goal of in situ and remote sens-
ing observational programs. Ensemble regional inventories
available from event-based mapping initiatives may help to
fill in gaps where global information is lacking. Considering
the algorithm framework regionally would present a useful
way to test global data sets with more comprehensive land-
slide inventory data. Future versions of the algorithm, incor-
porating the suggested changes, could make this approach
more valuable for discerning areas of potential landslide ac-
tivity and allow the research community to consider issues of
landslide hazard, risk and vulnerability in a broader context.
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